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Abstract

The algorithm PLATON is able to assign sets of chemical shifts derived from a single residue to amino acid
types with its secondary structure (amino acid species). A subsequent ranking procedure using optionally two
different penalty functions yields predictions for possible amino acid species for the given set of chemical shifts.
This was demonstrated in the case of the α-spectrin SH3 domain and applied to 9 further protein data sets taken
from the BioMagRes database. A database consisting of reference chemical shift patterns (reference CSPs) was
generated from assigned chemical shifts of proteins with known 3D-structure. This reference CSP database is used
in our approach for extracting distributions of amino acid types with their most likely secondary structure elements
(namely α-helix, β-sheet, and coil) for single amino acids by comparison with query CSPs. Results obtained for the
10 investigated proteins indicates that the percentage of correct amino acid species in the first three positions in the
ranking list, ranges from 71.4% to 93.2% for the more favorable penalty function. Where only the top result of the
ranking list for these 10 proteins is considered, 36.5% to 83.1% of the amino acid species are correctly predicted.
The main advantage of our approach, over other methods that rely on average chemical shift values is the ability to
increase database content by incorporating newly derived CSPs, and therefore to improve PLATON’s performance
over time.

Introduction

Protein structure determination by NMR is now a
routine process in structural biology and structural
genomics (Heinemann et al., 2000). Despite recent
improvements of the procedure, however, it is still
time consuming to determine a high resolution pro-
tein structure by NMR. Recent initiatives for high
throughput structure determination use automated as-
signment routines (Moseley and Montelione, 1999) or
alternatively selective labeling strategies (Medek et al.,
2000). All automated assignment procedures rely on
routines which evaluate their output lists (Moseley
et al., 2001; Leutner et al., 1998; Bartels et al., 1997).

In this context, chemical shift analysis has
been proven to be useful for validating assignments
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(Grzesiek and Bax, 1993), predicting secondary struc-
ture (Wishart and Sykes, 1994) and for providing
additional constraints to be used in structure calcu-
lations (Wishart and Case, 2001). Examples are the
programs PROTYP (Grzesiek and Bax, 1993) which
identifies amino acid types based on Cα and Cβ chem-
ical shifts, CSI which predicts secondary structures in
proteins using assigned optional combinations of 13C
and 1H chemical shifts (Wishart and Sykes, 1994), and
TALOS (Cornilescu et al., 1999) which predicts � and
� backbone angles from assigned 13C, 1H, and 15N
chemical shifts. It has been shown that especially the
use of heteronuclear chemical shifts significantly im-
proves the reliability of the proposed results either for
the assignment of amino acid types or the secondary
structure prediction in proteins. However, other au-
thors (Pons and Delsuc, 1999; Huang et al., 1997)
demonstrated that it is possible to predict either amino
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acid types solely on the basis of 1H chemical shifts
or amino acid types with their secondary structure el-
ements employing 1H chemical shifts and coupling
constants. The authors are using neural networks. Both
methods rely on separating complete amino acid spin
systems by recording 15N correlated spectra and nei-
ther method distinguishes all types of amino acids,
only classes of amino acids. Crucial to all methods is
the correct referencing of the chemical shifts (Wishart
and Nip, 1998).

The aim of this work was the development of an
algorithm which is able to predict both the amino acid
type and the secondary structure element, based on a
set of chemical shift values for the spin system of the
respective amino acid as obtained from standard triple
resonance experiments (Kay, 1997). We denote from
now on amino acid type with the involved secondary
structure element as amino acid species. A database
consisting of specific chemical shift pattern (reference
CSPs) was generated from assigned chemical shifts
of proteins with known 3D-structure. These reference
CSPs are the basis in our approach for the prediction of
amino acid species. The program PLATON compares
query CSPs of unassigned chemical shifts to the refer-
ence CSP database to predict the amino acid species
and distinguishes between three secondary structure
elements, namely α-helix, β-sheet, and coil. The input
for the database were 51 protein structures.

We have shown that it is possible to predict amino
acid species solely on the basis of CSPs using unas-
signed sets of chemical shifts of amino acid spin
systems as an input.

Prediction algorithm of amino acid type and
secondary structure: PLATON

Pattern definition of the reference CSP database

A chemical shift pattern (CSP), which is a vector
of Booleans describing relative positions of chemi-
cal shifts, is defined by an optional combination of
chemical shifts. The starting point for the definition of
the CSP is the creation of an N-dimensional chemical
shift space. N is determined by the kind of nuclei for
which chemical shifts are available in the databases,
for example Cα, Cβ, CO, and Hα, or subgroups of
those. An example is given in Figure 1 for Cα, Cβ,
and CO chemical shifts. The CSP contains a ‘+’ or
‘−’ as elements depending on the position of the in-
vestigated chemical shift with respect to a reference

value, for all nuclei considered. The positions of the
‘+’ and ‘−’ are defined by the axis of the chemical
shift space, for example CSP (Cα, Cβ, CO) = + − +.
In Figure 1, the reference value is in the center of
this three-dimensional chemical shift space (central
red point). The chemical shift values of an amino acid
are compared to this point. If the value is bigger a ‘+’
is assigned, and analogously a ‘−’ is assigned if the
value is smaller. Hence for all dots in the red quadrant
the CSP (Cα, Cβ, CO) = + + + is obtained. The
chemical shift space can be further subdivided by in-
troducing again reference points into the two halves of
each dimension to allow for a distinction of otherwise
identical CSPs. This is shown using the example of
the two blue dots which have the same subpattern after
the first iteration (CSP (Cα, Cβ, CO) = + + +). The
new reference value (upper red point) defines another
coordinate system in the upper right quadrant. Practi-
cally, the second and higher order reference points are
chosen according to a statistical analysis of all amino
acid species having the same three digit CSPs in the
previous coordinate system.

Now each dot can be distinguished by the second
set of coordinates (indexed with an apostrophe), yield-
ing the vector CSPs, CSP1 (Cα, Cβ, CO, Cα′, Cβ′,
CO′) = ++++++ and CSP2 (Cα, Cβ, CO, Cα′, Cβ′,
CO′) = + + + − −−. The length of the CSP depends
thus on the number of chemical shift space dimen-
sions and on the number of created subspaces. This
approach was chosen to take into account the continu-
ity of the chemical shift space and the non-Gaussian
distribution of chemical shifts.

Reference CSP database construction

Data obtained from 51 proteins were used to create
a reference CSP database (see below). 15 data sets
were taken from the TALOS database. A Tcl/Tk-script
was written to extract chemical shifts, along with the
protein identification, the residue number, and the
PDB ID, from the BioMagResBank (BMRB) database
(Seavey et al., 1991; http://www.bmrb.wisc.edu). All
proteins with paramagnetic center and protein com-
plexes were excluded. A second criterion was the
availability of all backbone and Cβ chemical shifts. By
applying these selection criteria a further 36 proteins
were obtained. Hence PLATON uses Booleans to con-
struct CSPs and therefore does not use the chemical
shift values in the further course of the prediction, it
is tolerant of slight variations in the reference. Our
data were selected with no particular preference of a
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Figure 1. Illustration of the creation of CSPs in a N-dimensional chemical shift space (black frame). In this example Cα, Cβ, and CO chemical
shifts were taken into account. The black dots indicate the chemical shifts of an individual amino acid. The red dots represent calculated center
of masses which serve as reference values for the CSP building. The red frame is obtained after the first subdivision of the chemical shift space.

referencing system. However, most data (around 90%)
are referenced to DSS (81%) or TSP (9%). Analy-
sis of the pdb header file from the PDB database
(http://www.pdb.org; Bernstein et al., 1977) revealed
the secondary structure elements for each amino acid.

We used proteins belonging to a variety of protein
classes according to SCOP (Structural Classification
of Proteins; Murzin et al., 1995), whereby six SCOP
structural classes are now represented in the refer-
ence CSP database: all-α, all-β, α/β, alpha and beta,
membrane and cell surface proteins and peptides, and
small proteins. The CO, Cα, Cβ, Hα chemical shifts
and the corresponding secondary structure elements of
5896 amino acids served thus as input for the genera-
tion of the reference CSP database. In Figure 2, the
relative frequencies of occurrence of all amino acids
(w/o glycines) with the three used secondary structure
elements are shown.

The Chou–Fasman (Chou and Fasman, 1974; Kyn-
gäs and Valjakka, 1998; Fasman, 1989) parameters
for the 51 proteins were calculated in order to control
if our data selection reflects a representative protein
structure space. They show the same trend (result not
shown) for the frequency of occurrence of an amino
acid type in α-helices and β-sheets, as predicted by
Chou–Fasman (Chou and Fasman, 1974).

In Figure 3, a subset of the complete reference CSP
database containing chemical shifts of 5896 amino
acids is shown. This database is constructed of Cα,
Cβ, CO, and Hα chemical shifts, using one subspace,
yielding 256 eight digit reference CSPs. However, 7
reference CSPs did not correspond to a chemical shift
constellation in the existing database of 5896 amino
acids. They were not further considered. Due to the
fact that each amino acid species possesses different
chemical shift values in the N-dimensional chemical



44

F
ig

ur
e

2.
R

el
at

iv
e

fr
eq

ue
nc

y
of

oc
cu

rr
en

ce
of

al
la

m
in

o
ac

id
s

(w
ith

ou
tg

ly
ci

ne
)

w
ith

its
se

co
nd

ar
y

st
ru

ct
ur

e
el

em
en

ts
.T

he
se

co
nd

ar
y

st
ru

ct
ur

e
el

em
en

ts
ar

e
di

vi
de

d
in

to
th

re
e

cl
as

se
s,

na
m

el
y

α
-h

el
ix

,β
-s

he
et

,a
nd

co
il

(a
ll

ot
he

r
el

em
en

ts
).

T
he

da
ta

w
er

e
ob

ta
in

ed
fr

om
51

pr
ot

ei
ns

w
ho

se
3D

st
ru

ct
ur

es
ar

e
kn

ow
n.



45

Figure 3. A subset of the complete reference CSP database created from Cα, Cβ, CO, and Hα chemical shifts is shown. The complete database
contains reference CSPs from 5896 amino acids. The amino acids types are subdivided into three classes upon their secondary structure elements
(C = coil, H = α helix, and S = β sheet). Sum 1 is the total number of the different amino acid species, for example ALAcoil occurs 211 times
in the database. Number 1 is the number of occurring reference CSPs for a particular amino acid species contained in the database, for example
for ALAcoil 19 different reference CSPs exist. This corresponds to 7% of all possible reference CSPs. Sum 2 is the total number of occurrence
of each particular reference CSP. Number 2 is the number of amino acid species characterized by each particular reference CSP. The content
of each reference CSP is a distribution of occurring amino acid species. The resulting percentage indicates how often a certain reference CSP
occurs for different amino acid species.
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shift space, several reference CSPs might be con-
nected with one amino acid species. On the other hand,
an amino acid species occurs predominantly in a de-
fined region of the chemical shift space. Due to the
small dispersion of the chemical shift values of dif-
ferent amino acid species, one reference CSP might
represent several amino acid species.

For example, reference CSP 9 (+ − − − − − −−)
contains six different entries (four are shown in Fig-
ure 3) which are only 11% of all possible amino acid
species. These amino acid species with frequency of
occurrence in the database are: ALAcoil (22), ALA-
helix (5), ALAsheet (4), ARGsheet (1), GLNcoil (3),
and GLNhelix (1) (the latter two are not shown in Fig-
ure 3). In the following, it will be used that CSPs of
the same kind of unassigned amino acid species cor-
respond to the one of highest occurrence, in this case
ALAcoil. The justification for this is seen in the fact
that all amino acid species show up in a limited amount
of reference CSPs, for example ALAcoil is defined
by only 19 different reference CSPs of 256 possible
ones. The significance of the procedure should in-
crease when a larger number of nuclei is taken into
account. For further differentiation, the CSP can be
extended by subdivision of the chemical shift space
into smaller partitions. Each subdivision extends the
CSP with an additional subpattern which would be in
the example above four further digits per subdivision
step (iteration).

PLATON algorithm

The first step is to execute a module that generates a
reference CSP database with different chemical shift
spaces. Chemical shift values extracted from pub-
lic NMR databases serve as input for the reference
CSP database. Secondly, a module compares the ref-
erence CSPs with CSPs of an investigated protein
(query CSPs). Query CSPs are constructed in the same
manner as reference CSPs. In Figure 4, a flow chart
schematically illustrates the PLATON algorithm. The
outlined steps of the algorithm are describing in more
detail in the following paragraphs.

For investigated query CSPs, the rows in Figure 3
that correspond to the respective reference CSP yield
an amino acid species distribution that may be in-
terpreted further using penalty functions. We tested
two penalty functions which are derived from different
statistical assumptions.

Firstly, calculating the relative frequencies of oc-
currence of the amino acid species in the distributions

leads to penalty function 1. This function is the ra-
tio of the number of a certain amino acid species for
a particular CSP and the total number of this amino
acid species in the database (for example 13.7% for
ALAcoil with CSP 22 (+ − − − − − +−). Secondly,
the sum of the normalized variances of all average
chemical shift values from the amino acid species used
in PLATON represents directly the penalty value for
each entry of the amino acid species distribution. The
penalty options are used to associate each possibility
with a probability-like factor, allowing for a ranking
of the distributions.

Test run on α-spectrin SH3 domain

The procedure was tested using the chemical shifts
of the α-spectrin SH3 domain while the database was
constructed without these data. In addition, the para-
metrization was refined and the ability of the algorithm
to incorporate new CSPs was examined.

The α-spectrin SH3 domain consists of 62 amino
acids. Both the X-ray and the NMR structures are
known (Musacchio et al., 1994; Blanco et al., 1997).
At first, query CSPs with CO, Cα, Cβ and Hα chem-
ical shifts were constructed of those 57 amino acids
for which the respective chemical shift data were
available. The α-spectrin SH3 domain contains three
glycines which were not considered. Furthermore,
Ser19 and Met1 were excluded due to the fact that the
CO chemical shifts were not assigned by Blanco et al.
For 52 out the 57, the correct amino acid species were
contained in the distributions that resulted from the
inspection of the reference CSP database. The queries
for Tyr15, Trp41, Trp42, Pro54, and Lys60 yielded
results without the respective amino acid species.

The distributions were alternatively ranked using
the penalty functions (see PLATON algorithm). The
results of the α-spectrin SH3 domain after applying
the different penalty functions are shown in Figure 5.
Circles represent the output of PLATON penalized
with the relative frequencies of occurrence of the CSPs
(penalty function 1), while squares indicate the ap-
plication of the second penalty function (sum of the
normalized variances). For 32 residues the two dif-
ferent penalty functions lead to significantly different
values in the two ranked distributions.

Upon application of the two penalty functions the
two resulting ranking lists were compared. In both lists
20 amino acid species are listed on the same ranking
positions. Out of these 20, 14 amino acid species are
predicted in position one. This means that highly re-
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Figure 4. Flow chart of the PLATON algorithm.

liable results are in general obtained by both penalty
functions.

The quality of the predictions is shown in Figure 6,
by means of a histogram displaying the frequency of
occurring ranking positions dependent upon on the ap-
plied penalty functions. Either 20 (penalty function 1)
or 19 (penalty function 2) amino acid species were
correctly predicted.

Using penalty function 1 leads to 63.5% (33 of
52) of the correct amino acid species ranked in the
first three positions, whereas penalty function 2 pre-
dicts 76.9%, corresponding to 40 out of 52 amino acid
species, in the first three positions. Currently, penalty
function 2 yields better results than penalty function 1.

In order to verify the quality of the prediction,
PLATON was tested on a further 9 proteins (Table 1)
using the same parameters as in the α-spectrin SH3 do-
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Figure 6. Calculated histogram of the ranking positions for the amino acid species of the α-spectrin SH3 domain. Upon application of penalty
function 2, 76.9% of the found amino acid species are predicted in the first three positions whereas penalty function 1 predicts 63.5% in the
first three positions.

main test run. The selected proteins belong to different
structural classes. The results of PLATON varied de-
pending on the chosen examples. Where only the first
three ranking positions are considered, the percentage
of correctly predicted amino acid species ranges from
58.7% to 88.1% for penalty function 1 and from 71.4%
to 93.2% for penalty function 2. If only the first rank-
ing position is taken as a result, the correct predictions
range from 30.0% to 74.6% for penalty function 1 and
from 36.5% to 83.1% for penalty function 2. An obvi-
ous trend for the ability of PLATON to predict amino
acid species, dependent on their structural class, could
not be observed.

We also applied PROTYP to the 10 test proteins
(Table 1). For comparison PROTYP yields slightly
better results if ranking positions 1–3 are taken into
account. If only the first ranking positions are con-
sidered, both programs have a comparable prediction
rate, although PLATON gives additional information
about the secondary structure.

If PLATON is used to identify only the correct
amino acid type (without secondary structure infor-
mation) the performance is even further increased.
This has been demonstrated for the α-spectrin SH3
domain. In the case of penalty function 1 the number

of correctly predicted amino acids (ranking position
one) rises from 20 to 28, penalty function 2 yields
further 12 correctly predicted amino acids totaling
in 31. Interestingly, 3 out of the former 5 amino
acid species which were not contained in the distrib-
ution lists could be now obtained as amino acid types,
namely Trp41, Trp42, and Lys60. We compared the
performance of PLATON and PROTYP as modules
for amino acid type prediction only. PROTYP, which
is the only comparable program with similar input
and output, yielded 23 correctly predicted results on
ranking position one which is significantly less than
the 31 top scores of PLATON in the more favorable
case (data not shown). However, the performance of
penalty function 1 should improve with an increas-
ing database. If more patterns are added and, more
importantly, the number of amino acid species for its
reference CSP increases, the penalizing improves.

On the α-spectrin SH3 domain we tested various
parameter settings for the algorithm in order to opti-
mize its performance. Table 2 describes the percentage
of correct amino acid species contained in the distrib-
utions and the average number of entries depending on
the number of iterations. If one iteration is applied, all
amino acid species are contained in the distributions,



51

Figure 7. Illustration of the ability of PLATON to learn new reference CSPs on the example of the α-spectrin SH3 domain. The percentage of
recognition is plotted vs. the amount of amino acids used as an input for the generation of the database.

Table 2. On the example of the α-spectrin SH3 domain the optimum between percentage of correct recognition and the number of
possible hits are shown

Number of distributions Number of distributions Number of distributions Average length of the Number of iterations

w/o entries w/o correct amino with correct amino distributions of

acid species acid species the query CSPs

(%) (%) (%)

0 0 100 27.2 1

0 8.8 91.2 6.1 2

17.5 38.6 43.9 2.2 3

however with high ambiguity. The average number of
entries in the distributions is 27.2 per query CSPs.
In the case of three iterations, both values decrease.
The distributions are now less ambiguous (2.2 entries
per query CSP) but either the number of distributions
without entries increases from 0 to 17.5%, or the num-
ber of distributions not containing the correct amino
acid species increases from 0 to 38.6%. Thus, two
iterations are currently applied as the optimal compro-
mise for the existing amount of chemical shifts in the
reference CSP database and performance of PLATON.
For the 57 analyzed residues of the α-spectrin SH3 do-
main 91.2% of the amino acid species were correctly

contained in the distributions and the average length
of the distributions is 6.1.

Apart from increasing iteration levels, the result
could be further improved by enlarging the database.
The reliability of recognition, that is the correct amino
acid species is contained in the distribution, increased
with the number of amino acids contained in the ref-
erence CSP database. In Figure 7, the percentage of
recognition is plotted against the number of amino
acids used as input for the generation of the reference
CSP database. With currently 5896 chemical shift
sets in the database, and without having added the α-
spectrin SH3 domain chemical shifts, above 90% of
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the α-spectrin SH3 domain amino acid species are now
elements in the distributions.

If the reference CSP database is constructed ei-
ther from CO, Cα, and Cβ, or from Cα, Cβ, and Hα

chemical shift values, the percentage of recognition
further increases up to 98.25% (data not shown) but
the average length of the distributions elongates from
6.1 to 12.6. The input of a higher number of chemical
shifts improves the reliability of the predicted amino
acid species significantly.

After resonance assignments and the structural
work of the investigated proteins are complete, newly
created CSPs can be entered into the database, which
is hence constantly growing. In this way, query CSPs
which were not associated with an amino acid species
before are added to the reference CSP database in-
creasing the reliability of PLATON. If the number
of successful prediction hits increases with increas-
ing the database, it would be feasible to introduce
another iteration step. However, given the current
number of database entries, only two iteration steps
are recommended.

The reference CSP database and the source
code of the program PLATON are available under
http://www.fmp-berlin.de/∼labudde. PLATON was
written in C and the graphical user interface was
created with Tcl/Tk.

Conclusion

In this work, we have used PLATON to predict amino
acid species from unassigned chemical shift values,
which was demonstrated for the α-spectrin SH3 do-
main and tested on a further 9 proteins (Table 1). Our
results show that it is possible to use CSPs for the
prediction of amino acid species. The percentage of
the correct amino acid species occurring in the first
three positions in the ranking list, ranges from 71.4%
to 93.2% using the more favorable penalty function.
If only the top result of the ranking list for these 10
proteins is considered, 36.5% to 83.1% of the amino
acid species are correctly predicted.

The main advantage of our approach over other
methods which rely on for example average chemical
shift values, is the ability of the reference CSP data-
base to extend the distributions for reference CSPs,
and thus to improve significantly its performance with
increasing content. This has two consequences for the
quality of the prediction: First, untypical query CSPs
can be learnt after the verification and the reliability of

the prediction of underrepresented reference CSPs is
improved. Second, as outlined in Table 2, the amount
of data limits the number of iterations used to construct
the reference CSPs, implying that more data would
allow the introduction of further subdivision steps and
therefore to build more specific reference CSPs.

Furthermore, we could demonstrate that unas-
signed chemical shifts derived from standard triple
resonance experiments are a suitable starting point
for predicting amino acid species. Data input consists
solely of backbone resonances and Cβ chemical shifts;
no use of homonuclear side chain chemical shift in-
formation was made. PLATON yields results for each
amino acid type, without the need for forming amino
acid classes.

Also, the number of considered secondary struc-
ture elements could be increased, for example by
splitting the secondary structure class coil in turns,
loops, and hairpins or by differentiating between dif-
ferent helix types. In order to improve the reliability
of the secondary structure prediction, the secondary
structure of sequential neighbors could be taken into
account for choosing the correct entry on top of the
ranking list e.g. by considering three residues. The
use of higher dimensional chemical shift spaces is
also conceivable and should lead to more reliable
predictions.

We are currently working on including PLATON
into a complete sequence mapping program with si-
multaneous secondary structure element prediction.
At present we use PLATON in combination with
the resonance assignment program CATCH23 (Croft
et al., 1997) to evaluate pattern search results. It is
also feasible to use PLATON to verify assignments
which are produced in the course of a classical manual
procedure.
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